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Abstract. The problem of automatic music description is considered. The recorded music is mod-
eled as a superposition of known sounds from a library weighted by unknown weights. Similar
observation models are commonly used in statistics and machine learning. Many methods for es-
timation of the weights are available. These methods differin the assumptions imposed on the
weights. In Bayesian paradigm, these assumptions are typically expressed in the form of prior prob-
ability density function (pdf) on the weights. In this paper, commonly used assumptions about music
signal are summarized and complemented by a new assumption.These assumptions are translated
into pdfs and combined into a single prior density using combination of pdfs. Validity of the model
is tested in simulation using synthetic data.
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INTRODUCTION

Automatic music transcription (AMT) is a process of decomposing recorded music
signal into a sequence of higher-level sound events. The entire AMT—i.e. resolving
pitch, loudness, timing and instrument of all sound events in an input audio music signal
[5]—is not theoretically possible [5], therefore practical AMT has to be restricted to a
specific scenario. Commonly used scenarios are memory-based and data-based AMT.
The former utilizes sound models corresponding to a certainmusical instrument sound
(allowing to identify the instruments), the latter utilizes only rules which hold in general.
We are concerned with a special case of memory-based AMT. As another memory-based
AMT system, that can be termed as the entire [5], Kashino’s transcription system [9] is
considered.

Intuitively, the problem can be understood as an ‘inverse music sequencer’, Fig. 1.
Music sequencers have pre-recorded library of sounds (sound components) which are
combined together to create music signal. An input to the sequencer is a MIDI file
which contains information about beginning of music eventsin time, their duration, IDs
of sounds (in our case the pre-recorded sound components), their amplitude and modifi-
cation type. Component modification(s)—e.g. component truncation or pitch shifting—
were designed to reduce the size of the pre-recorded library. In this paper we consider
only component truncation as a possible modification. Output of the sequencer is the
audio signal. The input of our ‘inverse music sequencer’ is the recorded music signal
and the output is the estimated (transcribed) MIDI-like representation of music events.
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FIGURE 1. Music sequencer visualization: music events are depicted by squares. Their positions de-
note beginnings of the events in time. Each row represents one sound ID. Sound duration and modification
is represented by different color.

In principle, the sequencer performs linear superposition:

y(t) ≈ ∑
k∈K

α(k, t)s(k, pk), (1)

wherey(t) is theφ -dimensional vector of measurements at timet composed of either
time- or frequency-representation of the input music signal segment (frame);K ⊂
[1, . . . ,K] is a set of soundsactive at time t (since we do not restrict the size of this
set);the library of soundsS containsK sounds, each sound is formed by a sequence of
Lk frames;k denotes the ID of the music event, position within the sound component (as
requested by by component truncation) is denotedpk, 1≤ pk ≤ Lk and it is increasing
with time, s(k, pk) denotes thepkth frame in thekth sound component; 0≤ α(k, t) ≤ 1
denotes amplitude of thekth sound component at timet.

Model (1) is suitable representation of a sequencer, however, it is not suitable for the
inverse operation since the number of possible configurations of the setK is enormous.
Therefore, we re-parametrize (1) as being linear combination of all frames of all sound
components, where amplitudes of the inactive frames are setto zero. The frames are
indexed by a single indexi, i = 1, . . . ,N, which denotes absolute position of a frame in
the sound library:

y(t) ≈
N

∑
i=1

a(i, t) f (i)+ e(t). (2)

Here, due to the change in indexing, we have changed symbols of weights fromα to
a and ofs to f . The symbols for frames can be uniquely transformed to each other, e.g.
s(k, pk) = f (∑k

κ=1Lκ + pk). However, this is not the case fora andα since dimension of
a is much larger,a(i, t) now denotes weight of theith frame. The activity of component
in α is transformed into non-zero weight of the corresponding frames ina. Hence, the
strong restriction from model (1) of only one frame from a sound component being
active at timet was relaxed. This relaxation has both advantages and disadvantages.
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FIGURE 2. Example of an input signal composed of two overlapped library sounds. Amplitude matrix
is flipped upside down.

The first advantage is that model (2) can be conveniently written in matrix form

Y = FA+E,

where matricesY,F,A andE are composed as follows:Y = [y(1),y(2), . . .,y(T )], F =
[ f (1), f (2), . . . f (N)] A = [a(0),a(1), . . .a(T)], a(t) = [a(1, t),a(2, t), . . .,a(N, t)], E =
[e(1),e(2), . . .,e(t)], as illustrated in Fig. 2. Second advantage is that model struc-
ture of model (2)—i.e. vector of measurements being linear combination of unknown
parameters—is used in many statistical model for which there exist efficient parameter
estimation methods. For example, linear regression, factor analysis [1], matching pursuit
[11] and independent component analysis [2] (ICA) arise from (2) by imposing different
assumptions on parametersA andF. These method are used in music processing, e.g.
ICA for blind (unsupervised) source separation (BSS) techniques in monoaural input
music signals [5].

The main disadvantage of the relaxation is that it allows to explain signaly(t) by a
combination of frames that are not valid from musical point of view. Since we want
to avoid strict restrictions of model (1), we seek less strict representation of these as-
sumptions. Since each of the methods mentioned above can be interpreted as a Bayesian
estimator ofA with different prior onA andF , we seek a smooth prior pdf onA that
respects constraints of model (1) as close as possible. The challenge is to translate mul-
tiple pieces of prior knowledge about music signal into a single smooth pdf. We propose
the following three-step approach: (i) each constraint is transformed a parametric pdf,
(ii) these pdfs are joined into a single parametric pdf, and (iii) parameters of this den-
sity are estimated from artificially generated plausible realizations ofA. The pieces are
represented by a Gaussian pdfs for computational tractability.

The paper is organized as follows: common model consideration are presented in
the first section; the main result—i.e. assessment of knowledge on musical signal and
its composition into a pdf—is presented in the second section; the free parameters are
trained on real data in the third section.
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MODEL CONSIDERATIONS

The residuese(·) in model of observation (2) are assumed to have homogeneous Gaus-
sian distribution, hence the whole sequence of observations can be written using matrix
normal distribution [1]:

p(Y |A,F,ω) = N (FA,ω−1IT ⊗ Iφ ). (3)

Here,N denotes normal distribution of matrix argument,ω is scalar precision parame-
ter, IT , Iφ denotes identity matrix of dimensionsT ×T , φ ×φ , respectively.

The task is to estimate posterior density on matrixA, p(A|F,Y). Following the
Bayesian approach, we need to complement likelihood function (3) by prior density
onω andA, i.e. p(ω) andp(A). For computational tractability reasons, we prefer to use
priors conjugate to (3) which are Gaussian onA and Gamma onω, [8]. Since omega
is scalar parameter, its density is determined by two parameters of the Gamma density
which may be chosen to yield flat prior, see e.g. [7]. However,p(A) is parametrized
by mean value of sizeNT and covariance matrix of sizeNT ×NT . Clearly a restricted
parametrization of these parameters is required. Therefore, the constraints of music sig-
nal will be translated into structural properties of mean and covariance matrix ofp(A).

We consider the following phenomena that are specific for music signal:

(A) the amplitude matrixA is sparse. Note, from (1), that only less thanK ≪N elements
of a(t) should be non-zero.

(B) when theith frame of a sound component is active in timet, andi is inside a sound
component, the probability that thei + 1 frame of the same component is active
in time t +1 is high. No temporal correlation is assumed wheni is at the end of a
component.

(C) longer sequences of active frames are favored over shorter, on the other hand se-
quences should not exceed total length of the sound component, Lk. This assump-
tion arise from the allowed truncation of the sound component.

(D) similarity measure between library frames with non-zero weight at timet should
be low. Since frames within one sound component are similar,this assumption is
a substitute for the constraint of only one active frame within a sound component
from model (1).

Phenomena (A), (B) and (D) are commonly used in music signal processing. (A) is
known as a sparsity constraint, see BSS methods in [5], (B) models temporal correlation
of subsequent frames [5], [3], [4], (D) stems from statistical independence of sound
sources, e.g. BSS in [5]. Phenomenon (C) is an extension proposed in this paper. These
phenomena can be translated into Gaussian pdfs as follows.

Sparsity. Sparsity (A) is typically enforced by ‘pushing’ mean valuestoward zero
mean,a(t) ∼ N(A)(µ(A),ζ−1 · IN), µ(A) = 0 with unknown scalar precisionζ . Note that
due to restricted support ofa(i, t), the likelihood ofa(i, t) = 0 can be further increased
by choosing negative values ofµ(A).
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Temporal dependence. Temporal covariance (B and C) ofa(t) with the previous
vector realizationsa(t−1) is represented by mean value ¯a(t−1) constructed as follows:

ā(t −1) = [c,c+a(1, t −1),c+a(2, t−1), . . .c+a(L1−1, t −1),
c,c+a(L1 +1, t −1), . . .c+a(L1+L2−1, t −1),
. . .]′.

(4)

Here, each row on the right-hand-side of (4) represents one sound component of length
Lk. c denotes probability that a new component will start playingat any position – since
we allow component truncation this constant is present in all elements of (4).

The preference for longer sequences (C) may be reinforced bysuitable covariance
structure design. We make the following choice for varianceof the ith element of a
sound component:

λ 2
i =

(

λ + γ
(

1−

(

pk

Lk

))2
)2

(5)

For the purpose of this section,i is converted intok andpk as used in model (1).
Note that the variance is linearly decreasing with indexi, starting fromλ + γ at the

beginning of a component, and reachingλ at the end of a component. The rationale is
that we still prefer continuation of a sequence via its mean value. The exact steepness of
the slope is modeled by parameterγ which will be identified from simulations.

Finally, the prior pdf for this two phenomena, (B) and (C) is:

p(a(t)|a(t−1)) = N(BC)(ā(t −1),Λ), (6)

whereΛ is a diagonal matrix with elements (5).

Similarity measure. The tones are supposed to be well isolated as in model (1). It is
highly unlikely that very close frames from a sound component will be played together
at the same time. This knowledge can be expressed by positiveor negative covariance
of the weightsa(i) anda( j) of theith and thejth sound in the libraryS. The pdf of this
phenomenon is then:p(a(t)) = N(D)

(

µ(D),−η1Ψ+η2
)

, where

Ψ(i, j) = cos( f (i), f ( j)) : i 6= j,
= ε : i = j. (7)

This term is designed to penalize similar frames via negative correlation. However,
we do not wish to encourage presence of any other tones via positive correlation. Since
Ψ(i, j) → 1 for a(i, t) anda( j, t) positive correlated,Ψ(i, j) → 0 for a(i, t) anda( j, t)
negative correlated, values of theΨ must be rescaled. This is achieved by conversion
−η1Ψ +η2. The diagonal ofΨ is composed of constantsε, chosen to be fixed since it
has the same role asζ in section (A).

In this Section, we make no assumptions on the mean valuesµD. This parameter will
be optimized to have minimal information impact on the resulting pdf.

Remark 1:. Restriction of weightsa to support 0≤ a(i, t) ≤ 1 will be considered a
posteriori.
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ELICITATION OF PRIOR PDF

Each of the densities derived in the previous Section captures some important feature of
the problem. The task now is to combine these densities into asingle Gaussian pdf. We
will use the standard geometric merging (also known as logarithmic pooling) [6]. The
constructed pdf is build from pieces defined above as follows:

p(a(t)|a(t−1)) ∝ N(A)(·|·)
w(A)N(BC)(·|·)

w(BC)N(D)(·|·)
w(D) (8)

where ∝ denotes equality up to a normalizing constant,w(A),w(BC),w(D) are scalar
weights corresponding to each of the sources.

Without loss of generality, we will assume that these weights are equal to one. Note
that each of the sources has covariance matrix multiplied bya scalar, for exampleζ in
N(A). If w(A) was different from one, the weight can be absorbed by the covariance ma-
trix asw(A)ζ . Thus, we consider that the weight of each pdf in (8) is already incorporated
in their covariance structure.

It is easy to verify that geometric combination of Gaussian densities is again a
Gaussian density:

N (µ̄ , Σ̄) ∝ N (µ1,Σ1)N (µ2,Σ2), (9)

whereΣ̄ = (Σ−1
1 +Σ−1

2 )−1 andµ̄ = Σ̄(Σ−1
1 µ1 +Σ−1

2 µ2).
Application of formula (9) to pdfsN(A) andN(BC) yields N(ABC)(µ(ABC),Σ(ABC)),

µ(ABC) = Σ(ABC)(Λ−1ā(t −1)), Σ(ABC) = (ζ IN +Λ−1)−1). Prior on phenomena (D) can

be added similarly:̃µall = Σ̃all(Σ−1
(ABC)µ(ABC) + Σ−1

(D)µ(D)). However, sinceµ(D) is not
specified, this value can not be computed directly. Therefore, numeric value ofµall is
obtained by minimizing impact of unknownµ(D) on the result of combination in the
sense of Kullback-Leibler divergence [10]:

p(a(t)|a(t−1))=N (µall ,Σall) = arg min
µ̃all ,Σ̃all ,µ(D)

KL(N (µ̃all , Σ̃all),N(ABC)(·, ·)). (10)

Using the formula for Kullback-Leibler divergence of two Gaussian densities [8], it
is easy to show that minimum of (10) is reached forµall = µ(ABC), Σall = (Σ−1

(ABC)
+

(−η1Ψ +η2)
−1) (substitution of these values into (10) yields zero divergence which is

a sufficient condition for minimum).
Elicitation of structure of the prior densityp(A) is now complete. The density is

p(A|ζ ,λ ,γ,c,η1,η2) = N(A)(0,ζ−1IN)
T

∏
t=2

N (µall,Σall) (11)

Here, the recursion is started at timet = 1 fromN(A). This choice is arbitrary. Potentially,
nuisance parametersζ ,λ ,γ,c,η1,η2 can be treated as hyper-parameters and estimated
from the observed data. However, for the purpose of verification of the developed
prior structure, we will estimate their values form a training set of realizations ofA
using maximum likelihood approach. For convenience, we will maximize (11) using a
numerical simplex method.
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FIGURE 3. Amplitude matrix visualization. Left: amplitudes withoutcorruption. Right: amplitudes
corrupted by permutation.

EXPERIMENTAL VERIFICATION ON A SET OF MIDI FILES

Experimental verification was performed on data with the following parameters: number
of frames in the libraryN = 936, number of sound components in the libraryK =
35, total length in time domain 2.5s. Each frame correspondsto 96ms in real time
(corresponding to a segment of length 4096 when sample rate is 44.1 kHz.) The sound
components (s(k, t) and f (i)) were created using ‘fm’ synthesizer producing complex
harmonic tones, their amplitude envelope was selected to resemble to a piano tone.

Two sets of music files were generated from MIDI of Mozart, Debussy, Beethoven
and Chopin, the training set (50s) and the test set (20s). Thetraining set was used to
estimate nuisance parameters, while the test set was used toverify performance of the
model.

The key criteria of performance is separation of valid musicevents representation
from corrupted one. Hence, prior (11) is verified if likelihood of valid MIDI files is
significantly greater than that of the corrupted MIDI files.

We have considered two types of corruption ofA: (i) additive noise of increasing
variance, and (ii) permutation of indices of active frames in the library. The latter
corruption type is illustrated in Fig. 3. Likelihood of the corrupted amplitudes from the
test set computed using parameters obtained from maximum likelihood approach on the
training set are depicted in Fig. 4. The likelihoods are decreasing with increasing level
of corruption. The decrease of likelihood with increased permutations is less significant
than that with increased variance of the additive noise.

CONCLUSION AND FUTURE WORK

Two models of automatic music transcriptions were considered: model with strict re-
strictions on music events and model with relaxed restrictions. The process of estima-
tion of the latter model is simpler, however, it does not penalize invalid sequences of
music events. This penalization can be achieved by a suitable prior density function on
parameters of the latter model. In this paper, we have made the first step in this direction
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FIGURE 4. Value of prior for corrupted signals. Left: corruption by additive noise with random
amplitudes of mean 0.5 and variance 0.0625. Each experimentwas performed with different number of
corrupted frames within each 20 time units (frames) ofA. The likelihood of corrupted data is significantly
decreasing. Right: permutation corruption for different number of corrupted frames per each 20 active
frames ofA.

by constructing the prior using methods of probability combination and minimization of
Kullback-Leibler divergence. We have shown on synthetic data that the resulting prior
density prefers valid music sequences over corrupted ones.Further improvement can
be achieved via better optimization of the nuisance parameters, or by addition of other
relevant pieces of prior knowledge. The presented approachis very general and can be
immediately used in other application domains. The ultimate test of quality of the de-
signed prior pdf is performance of the full music transcription algorithm.
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