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Abstract. The problem of automatic music description is consideré@. Fecorded music is mod-
eled as a superposition of known sounds from a library weigfiity unknown weights. Similar
observation models are commonly used in statistics and imaddarning. Many methods for es-
timation of the weights are available. These methods difiethe assumptions imposed on the
weights. In Bayesian paradigm, these assumptions areaffypexpressed in the form of prior prob-
ability density function (pdf) on the weights. In this papssmmonly used assumptions about music
signal are summarized and complemented by a new assumptiese assumptions are translated
into pdfs and combined into a single prior density using ciiation of pdfs. Validity of the model

is tested in simulation using synthetic data.
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INTRODUCTION

Automatic music transcription (AMT) is a process of decosipg recorded music
signal into a sequence of higher-level sound events. TheeeAMT—i.e. resolving
pitch, loudness, timing and instrument of all sound evangiinput audio music signal
[5]—is not theoretically possible [5], therefore practigdT has to be restricted to a
specific scenario. Commonly used scenarios are memoryllzagk data-based AMT.
The former utilizes sound models corresponding to a certaigical instrument sound
(allowing to identify the instruments), the latter util&zenly rules which hold in general.
We are concerned with a special case of memory-based AMThéthar memory-based
AMT system, that can be termed as the entire [5], Kashinaisscription system [9] is
considered.

Intuitively, the problem can be understood as an ‘inverssimsequencer’, Fig. 1.
Music sequencers have pre-recorded library of sounds ¢soomponents) which are
combined together to create music signal. An input to theisecer is a MIDI file
which contains information about beginning of music evemtame, their duration, IDs
of sounds (in our case the pre-recorded sound compondres)amplitude and modifi-
cation type. Component modification(s)—e.g. componemidation or pitch shifting—
were designed to reduce the size of the pre-recorded lidratiis paper we consider
only component truncation as a possible modification. Qufpuhe sequencer is the
audio signal. The input of our ‘inverse music sequencerhesrecorded music signal
and the output is the estimated (transcribed) MIDI-likeresentation of music events.
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FIGURE 1. Music sequencer visualization: music events are depicyezhibares. Their positions de-
note beginnings of the events in time. Each row represemtsound ID. Sound duration and modification
is represented by different color.

In principle, the sequencer performs linear superposition

y(t) ~ Z a(k,t)S(k, pk)v (1)
ket

wherey(t) is the g-dimensional vector of measurements at tin@mposed of either
time- or frequency-representation of the input music digegment (frame); 7" C
[1,...,K] is a set of soundactive at timet (since we do not restrict the size of this
set);the library of soundS containsK sounds, each sound is formed by a sequence of
Lk frames;k denotes the ID of the music event, position within the sowrdmonent (as
requested by by component truncation) is dengigdL < px < Lk and it is increasing
with time, s(k, px) denotes thegyth frame in thekth sound component; € a(k,t) <1
denotes amplitude of théh sound component at tinte

Model (1) is suitable representation of a sequencer, howige not suitable for the
inverse operation since the number of possible configuraidd the set’#” is enormous.
Therefore, we re-parametrize (1) as being linear comhonadf all frames of all sound
components, where amplitudes of the inactive frames areosatro. The frames are
indexed by a single indexxi = 1,...,N, which denotes absolute position of a frame in

the sound library:
N

y(t) zz\a(i,t)f(i)—l—e(t). (2)
=
Here, due to the change in indexing, we have changed symbulsights froma to
aand ofsto f. The symbols for frames can be uniquely transformed to etwdr,ce.g.
s(k, pk) = f(3X_; Lk + pk). However, this is not the case faanda since dimension of
ais much largera(i,t) now denotes weight of thigh frame. The activity of component
in a is transformed into non-zero weight of the correspondiagnis ina. Hence, the
strong restriction from model (1) of only one frame from a mdwomponent being
active at time was relaxed. This relaxation has both advantages and @distayes.
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FIGURE 2. Example of an input signal composed of two overlapped lipsaunds. Amplitude matrix
is flipped upside down.

The first advantage is that model (2) can be convenientlyewrin matrix form
Y =FA+E,

where matrice¥,F,A andE are composed as follow¥: = [y(1),y(2),...,y(T)], F =
[f(1),£(2),...f(N)] A= [a(0),a(1),...a(T)], a(t) = [a(L,).a(21),....a(N,1)], E =
[e(1),e(2),...,e(t)], as illustrated in Fig. 2. Second advantage is that modakt-str
ture of model (2)—i.e. vector of measurements being lineanlwnation of unknown
parameters—is used in many statistical model for whichetlesist efficient parameter
estimation methods. For example, linear regression, factalysis [1], matching pursuit
[11] and independent component analysis [2] (ICA) arisenf{@) by imposing different
assumptions on parameteksandF. These method are used in music processing, e.g.
ICA for blind (unsupervised) source separation (BSS) tegpes in monoaural input
music signals [5].

The main disadvantage of the relaxation is that it allowsxplan signaly(t) by a
combination of frames that are not valid from musical poihview. Since we want
to avoid strict restrictions of model (1), we seek less stepresentation of these as-
sumptions. Since each of the methods mentioned above catepreted as a Bayesian
estimator ofA with different prior onA andF, we seek a smooth prior pdf ok that
respects constraints of model (1) as close as possible.Fdiege is to translate mul-
tiple pieces of prior knowledge about music signal into gkrsmooth pdf. We propose
the following three-step approach: (i) each constraintaagformed a parametric pdf,
(il) these pdfs are joined into a single parametric pdf, amdparameters of this den-
sity are estimated from artificially generated plausibkdizations ofA. The pieces are
represented by a Gaussian pdfs for computational trattiabil

The paper is organized as follows: common model consideratre presented in
the first section; the main result—i.e. assessment of krayden musical signal and
its composition into a pdf—is presented in the second sectie free parameters are
trained on real data in the third section.
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MODEL CONSIDERATIONS

The residueg(-) in model of observation (2) are assumed to have homogeneaus-G
sian distribution, hence the whole sequence of obsen&atan be written using matrix
normal distribution [1]:

P(Y|AF, ) = A4 (FA w tlr ®1y). (3)

Here,.4” denotes normal distribution of matrix argumesstis scalar precision parame-
ter, It,1, denotes identity matrix of dimensioiisx T, @ x ¢, respectively.

The task is to estimate posterior density on ma#ixp(A|F,Y). Following the
Bayesian approach, we need to complement likelihood fana8) by prior density
onw andA, i.e. p(w) andp(A). For computational tractability reasons, we prefer to use
priors conjugate to (3) which are GaussianAdand Gamma o, [8]. Since omega
is scalar parameter, its density is determined by two paenmef the Gamma density
which may be chosen to yield flat prior, see e.g. [7]. HowepéA) is parametrized
by mean value of sizBIT and covariance matrix of siZéT x NT. Clearly a restricted
parametrization of these parameters is required. Thezgfioe constraints of music sig-
nal will be translated into structural properties of mead eovariance matrix op(A).

We consider the following phenomena that are specific foricrsignal:

(A) the amplitude matriXAis sparse. Note, from (1), that only less thére N elements
of a(t) should be non-zero.

(B) when theith frame of a sound component is active in timandi is inside a sound
component, the probability that the- 1 frame of the same component is active
in timet + 1 is high. No temporal correlation is assumed whenat the end of a
component.

(C) longer sequences of active frames are favored overeshort the other hand se-
guences should not exceed total length of the sound compdnei his assump-
tion arise from the allowed truncation of the sound compdanen

(D) similarity measure between library frames with nonezeseight at timet should
be low. Since frames within one sound component are sintiiar,assumption is
a substitute for the constraint of only one active frame withsound component
from model (1).

Phenomena (A), (B) and (D) are commonly used in music sigradgssing. (A) is
known as a sparsity constraint, see BSS methods in [5], (Befsdemporal correlation
of subsequent frames [5], [3], [4], (D) stems from statastindependence of sound
sources, e.g. BSS in [5]. Phenomenon (C) is an extensioropeaiin this paper. These
phenomena can be translated into Gaussian pdfs as follows.

Sparsity.  Sparsity (A) is typically enforced by ‘pushing’ mean valuesard zero
meana(t) ~ A (Ka), 71 N), H(a) = O with unknown scalar precisiofl. Note that
due to restricted support @fi,t), the likelihood ofa(i,t) = O can be further increased
by choosing negative values pfy).
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Temporal dependence. Temporal covariance (B and C) aft) with the previous
vector realizationa(t — 1) is represented by mean valag — 1) constructed as follows:

at—1) = [cc+a(lt—1),c+a(2,t—1),...c+a(l;—1t-1),
c.c+a(li+1,t—1),...c+a(lli+L—1,t—-1), 4)
)

Here, each row on the right-hand-side of (4) represents omedscomponent of length
Lk. c denotes probability that a new component will start playahgny position — since
we allow component truncation this constant is presentl ialanents of (4).

The preference for longer sequences (C) may be reinforceslibgble covariance
structure design. We make the following choice for variant¢he ith element of a

sound component:
o\ 2
A2 = ()\ +y(1—(&)) ) (5)
Lk

For the purpose of this sectians converted intd and py as used in model (1).

Note that the variance is linearly decreasing with indestarting fromA + y at the
beginning of a component, and reachih@t the end of a component. The rationale is
that we still prefer continuation of a sequence via its medne. The exact steepness of
the slope is modeled by paramejewhich will be identified from simulations.

Finally, the prior pdf for this two phenomena, (B) and (C) is:

p(at)lat —1)) = Agc)(@lt —1),A), (6)

whereA\ is a diagonal matrix with elements (5).

Smilarity measure. The tones are supposed to be well isolated as in model (¥). Iti
highly unlikely that very close frames from a sound compamnah be played together
at the same time. This knowledge can be expressed by positivegative covariance
of the weightsa(i) anda( j) of theith and thejth sound in the librans. The pdf of this
phenomenon is them(a(t)) = A(p, (u(D), —-mW¥Y+ r72) , Where

W(i,j) = (i), f(] H# ],
Qi) - cg:os( (i), f(i)) :i} (7)

This term is designed to penalize similar frames via negatotrelation. However,
we do not wish to encourage presence of any other tones vitvparrelation. Since
W(i,j) — 1 for a(i,t) anda(j,t) positive correlated¥(i, j) — O for a(i,t) anda(j,t)
negative correlated, values of tHé must be rescaled. This is achieved by conversion
—n1¥Y + n2. The diagonal of¥ is composed of constangs chosen to be fixed since it
has the same role &sin section (A).

In this Section, we make no assumptions on the mean vaiieghis parameter will
be optimized to have minimal information impact on the rasglpdf.

Remark 1:. Restriction of weights to support 0< a(i,t) < 1 will be considered a
posteriori.
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ELICITATION OF PRIOR PDF

Each of the densities derived in the previous Section captsmme important feature of
the problem. The task now is to combine these densities istogle Gaussian pdf. We
will use the standard geometric merging (also known as Itgaic pooling) [6]. The
constructed pdf is build from pieces defined above as follows

p(at)la(t— 1)) O An ()™ Age) (-]-)"EAp) (-])"® (8)

where [ denotes equality up to a normalizing constams), wgc), Wp) are scalar
weights corresponding to each of the sources.

Without loss of generality, we will assume that these weigire equal to one. Note
that each of the sources has covariance matrix multiplied bgalar, for examplé in
- If wiay was different from one, the weight can be absorbed by therzmae ma-
trix asw(a){. Thus, we consider that the weight of each pdfin (8) is alyeacorporated
in their covariance structure.

It is easy to verify that geometric combination of Gaussiamgities is again a
Gaussian density:

,/V([I,Z) D’/V(u17zl)'/V(u2722)7 (9)

whereZ = (571 + 351 tandp = S(37 i + 25 ).

Application of formula (9) to pdfs#(s and .4(gc) Yyields A agc)(Lasc)s Z(ABC)):
Haec) = Z(apc)(A1alt — 1)), Zagc) = ({In+A~1)1). Prior on phenomena (D) can
be added similarlyfiy, = ia”(Z&\lBC)u(ABC) + Z(*Dl)u(D)). However, sinceup) is not
specified, this value can not be computed directly. Theegfoumeric value ofiy, is

obtained by minimizing impact of unknown, on the result of combination in the
sense of Kullback-Leibler divergence [10]:

p(a(t)\a(t—l)):,/V(ua“,za“):argﬂ ;n"L KL(A (Blait» Zai1),-Hagc) ()~ (10)
all2all s M(D)

Using the formula for Kullback-Leibler divergence of two @sian densities [8], it
is easy to show that minimum of (10) is reached fRji = Hapc), Zal = (Z(_AlBC) +
(—n1¥ + n2)~Y) (substitution of these values into (10) yields zero divamgewhich is
a sufficient condition for minimum).

Elicitation of structure of the prior densify(A) is now complete. The density is

T
p(A‘Z7)\ » Y, C, N1, '72) = '/V(A)(O7 Z_:LIN) I_L'/V“Jall,zall) (11)
e

Here, the recursion is started at time 1 from.4(,,. This choice is arbitrary. Potentially,
nuisance parametefsA,y,c, N1, N2 can be treated as hyper-parameters and estimated
from the observed data. However, for the purpose of venéinabf the developed
prior structure, we will estimate their values form a traniset of realizations ofA
using maximum likelihood approach. For convenience, wémwéximize (11) using a
numerical simplex method.
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FIGURE 3. Amplitude matrix visualization. Left: amplitudes withoabrruption. Right: amplitudes
corrupted by permutation.

EXPERIMENTAL VERIFICATION ON A SET OF MIDI FILES

Experimental verification was performed on data with thefeing parameters: number
of frames in the libraryN = 936, number of sound components in the librry=
35, total length in time domain 2.5s. Each frame correspdnd36ms in real time
(corresponding to a segment of length 4096 when samplesdt4.1 kHz.) The sound
componentsgk,t) and f(i)) were created using ‘fm’ synthesizer producing complex
harmonic tones, their amplitude envelope was selectedstonble to a piano tone.

Two sets of music files were generated from MIDI of Mozart, D&dy, Beethoven
and Chopin, the training set (50s) and the test set (20s)tréiv@ng set was used to
estimate nuisance parameters, while the test set was usedifpperformance of the
model.

The key criteria of performance is separation of valid muesients representation
from corrupted one. Hence, prior (11) is verified if likeldt of valid MIDI files is
significantly greater than that of the corrupted MIDI files.

We have considered two types of corruptionfof(i) additive noise of increasing
variance, and (ii) permutation of indices of active framasthe library. The latter
corruption type is illustrated in Fig. 3. Likelihood of thercupted amplitudes from the
test set computed using parameters obtained from maxinkefihibod approach on the
training set are depicted in Fig. 4. The likelihoods are dasing with increasing level
of corruption. The decrease of likelihood with increasedmeéations is less significant
than that with increased variance of the additive noise.

CONCLUSION AND FUTURE WORK

Two models of automatic music transcriptions were considiemodel with strict re-
strictions on music events and model with relaxed restmsti The process of estima-
tion of the latter model is simpler, however, it does not pieranvalid sequences of
music events. This penalization can be achieved by a seifatdr density function on
parameters of the latter model. In this paper, we have maiergh step in this direction
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FIGURE 4. Value of prior for corrupted signals. Left: corruption bydiive noise with random
amplitudes of mean 0.5 and variance 0.0625. Each experwssnperformed with different number of
corrupted frames within each 20 time units (framesAof he likelihood of corrupted data is significantly
decreasing. Right: permutation corruption for differentrber of corrupted frames per each 20 active
frames ofA.

by constructing the prior using methods of probability camation and minimization of

Kullback-Leibler divergence. We have shown on synthettadihat the resulting prior

density prefers valid music sequences over corrupted dhether improvement can
be achieved via better optimization of the nuisance pararsedr by addition of other
relevant pieces of prior knowledge. The presented apprsaotry general and can be
immediately used in other application domains. The ultertast of quality of the de-

signed prior pdf is performance of the full music transaaptalgorithm.
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